Calpain inhibition protects against Taxol-induced sensory neuropathy.

نویسندگان

  • Min Sheng Wang
  • Albert A Davis
  • Deborah G Culver
  • Qinbo Wang
  • James C Powers
  • Jonathan D Glass
چکیده

Taxol is a highly effective anticancer agent that causes peripheral neuropathy as its major toxic side effect. The neuropathy is characterized by degeneration of sensory axons that may be severe enough to be dose limiting. Axonal degeneration involves the activation of the calcium-activated proteases calpains, and here we tested whether systemic inhibition of calpains with the peptide alpha-ketoamide calpain inhibitor AK295 can reduce the clinical and pathological effects of Taxol in a rodent model of Taxol neuropathy. In mice with Taxol neuropathy, AK295 reduced the degree of axonal degeneration in sensory nerve roots, and improved clinical measures of neuropathy, including behavioural and electrophysiological function. These findings were consistent for both 3- and 6-week models of neuropathy. In vitro, Taxol caused activation of both calpains and caspases in PC12 cells. AK295 inhibited the activation of calpains but did not interfere with the antimitotic effects of Taxol on microtubules, nor did it inhibit caspase-mediated cell death. These data implicate calpains in the pathogenesis of Taxol neuropathy, and demonstrate that AK295 can prevent axonal degeneration and clinical neuropathy in mice. In addition, AK295 did not interfere with the primary antineoplastic effects of Taxol on microtubules and cell death, suggesting that systemic calpain inhibition may be a good strategy for preventing neuropathy in patients being treated with Taxol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat.

The development of treatments for neuropathic pain has been hindered by our limited understanding of the basic mechanisms underlying abnormalities in nociceptor hyperexcitability. We recently showed that the polymodal receptor transient receptor potential vanilloid 4 (TRPV4), a member of the transient receptor potential (TRP) family of ion channels, may play a role in inflammatory pain (Alessan...

متن کامل

Calpain inhibition protects against virus-induced apoptotic myocardial injury.

Viral myocarditis is an important cause of human morbidity and mortality for which reliable and effective therapy is lacking. Using reovirus strain 8B infection of neonatal mice, a well-characterized experimental model of direct virus-induced myocarditis, we now demonstrate that myocardial injury results from apoptosis. Proteases play a critical role as effectors of apoptosis. The activity of t...

متن کامل

The TRPV1 receptor is associated with preferential stress in large dorsal root ganglion neurons in early diabetic sensory neuropathy.

Chronic diabetic neuropathy is associated with peripheral demyelination and degeneration of nerve fibers. The mechanism(s) underlying neuronal injury in diabetic sensory neuropathy remain poorly understood. Recently, we reported increased expression and function of transient receptor potential vanilloid 1 (TRPV1) in large dorsal root ganglion (DRG) neurons in diabetic sensory neuropathy. In thi...

متن کامل

Bogijetong decoction and its active herbal components protect the peripheral nerve from damage caused by taxol or nerve crush

BACKGROUND Bogijetong decoction (BGJTD) is a herbal drug formulation used in the traditional Asian medicine to treat neuropathic insults associated with diabetes and anticancer therapy. To understand the biological basis of BGJTD on protective effects against neuropathy, we investigated physiological and biochemical responses of the sciatic nerves deranged by taxol injection or crush injury in ...

متن کامل

Taxol induces apoptosis in cortical neurons by a mechanism independent of Bcl-2 phosphorylation.

Bcl-2, an antiapoptotic protein, protects cells against many but not all forms of apoptosis. For example, Bcl-2 does not protect non-neuronal cells against taxol, a microtubule-stabilizing agent. The underlying mechanism for the ineffectiveness of Bcl-2 against taxol has been the subject of intense interest. Data from non-neuronal cells indicate that taxol-induced apoptosis requires activation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 127 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2004